- (i) Consider the RSA scheme with public key (23, 407). Encrypt the message M = 321 and determine the corresponding private key.
- (ii) Is 98654320480 divisible by 120?
- (iii) Shade the region $|\bar{z} 2| \leq 3$.
- (iv) Prove that $gcd(a, b) \leq |a b|$ provided $a \neq b$.
- (v) What is the remainder when we divide 7^{8^9} by 10?
- (vi) What is $gcd((5!)^4, (4!)^5)$?
- (vii) Solve the simultaneous congruence

$$23x \equiv 17 \pmod{25}$$
$$13x \equiv 7 \pmod{14}.$$

- (viii) Find all solutions to $z + \overline{z} = 2i$. Find all solutions to |z| = 2i.
 - (ix) Prove or disprove: If $c \mid ab$ then $c \mid a$ or $c \mid b$.
 - (x) Solve $z^2 + 2\overline{z} 1 = 0$ over \mathbb{C} .

(i) Consider the RSA scheme with public key (23, 407). Encrypt the message M = 321 and determine the corresponding private key.

(ii) Is 98654320480 divisible by 120?

(iii) Shade the region $|\bar{z} - 2| \le 3$.

(iv) Prove that $gcd(a, b) \le |a - b|$.

(v) What is the remainder when we divide 7^{8^9} by 10?

(vi) What is $gcd((5!)^4, (4!)^5)$?

(vii) Solve the simultaneous congruence

 $23x \equiv 17 \pmod{25}$ $13x \equiv 7 \pmod{14}.$

(viii) Find all solutions to $z + \overline{z} = 2i$. Find all solutions to |z| = 2i.

(ix) Prove or disprove: If $c \mid ab$ then $c \mid a$ or $c \mid b$.

(x) Solve $z^2 + 2\overline{z} - 1 = 0$ over \mathbb{C} .